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ON THE OPTINUM TRANSVERSAL CONTOUR
OF A BODY AT HYPERSONIC sPEEps’)

by

ANGEZO MIEIE'""? and GARY R. saarzs(®**)

SUMMARY

This paper refers to a body whose length and base area are given and
considers the problem of determining the transversal contour which mini-
mizes the total drag (sum of the pressure drag and the friction drag) under
the following assumptions: (a) the body is slender in the longitudinal
sensej (b) the longitudinal contour is represented by a power lawy (c) the
distribution of pressure coefficients obeys Newton's impact law; and (d) the
distribution of skin-friction coefficients versus the abscissa is repre-
sented by a power law, The indirect methods of the Calculus of Variations
are employed and attention is focused first on a class of arcs composed of
n symnetric cycles each covering the angular interval 2n/n (or 2n segments
each covering the angular interval n/n) and, then, on the more general case

where these symmetry and multiplicity properties are not employed. It is

F"'J.‘h:l.s report supersedes the reports entitled "A Study of the Optimum
Transversal Contour of a Body at Hypersonic Speeds Using Indirect Methods,
Part I" and "A Study of the Optimum Transversal Contour of a Body at Hyper-
sonic Speeds Using Indirect Methods, Part II".

(**)pirector of Astrodynamics and Flight Mechanics, Bosing Scientific
Research laboratories.

(***)start Associate, Boeing Scientific Research Laboratories.



shown that the extremal configuration depends strongly on the friction pa-
rameter, a parameter which is proportional to the ratio of the cubic root
of the average friction coefficient to the average thickness ratio,

Two distinct behaviors are possible depending on whether the rfrictiomn

parameter is supercritical (Kt > 1) or subcritical (Kf <1l)e If the fric-

tion parameter is supercritical, the extremal solution is of class I (a circle),

and the friction drag accounts for more than two~thirds of the total drag,.
If the friction parameter is subcritical, the extremal solution is of either
class II (any combination of straight-line zegments tangent to a basic circle
whose radius depends on the length, the base area, the average friction co=
efficient, and the exponents defining the longitudinal contour and the dis=
tribution of skin-friction coefficients) or claéa III (any combination of
circular arcs of radius equal to that of the basic circle and straighte

line segments tangent to the circular arcs); furthermore, the friction drag
is two-thirds of the total drage. Among the solutions of class II and

class III, a particular set is represented by starlike configurations and

a further subset by regular polygons.

While the solution is unique in the supercritical case, it is not unique
in the subcritical case., More specifically, for each given subcritical
friction parameter, an infinite number of equal-drag solutions exist which
minimize the drag. For the particular set of starlike configurations, each
solution corresponds to a different number of cycies; however, the solution
becomes unique if ome further constraint is imposed on the problem, such as,
the inner radius for bodies of class II and the outer radius for bodies of

class III.
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Comparison of the drag of extremal solutions with that of bodies of
revolution shows that the relative difference is negligible for those sub-
critical values of the friction parameter which approach one but is ap-
preciable for those values which approach zero, As an example, the extremal
configuration exhibits 5% less drag than the body of revolution having equal
length and base area for K, = 0,8, 25% less drag for K, = 0.6, and 57% less

f

drag for K, = O.4,
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1, INTRODUCTION

In a previous paper (Ref. 1), the transversal contour of a slender
body of given length and base area was determined in such a way that the
total drag (sum of the pressure drag and the friction drag) is a minimum,
Direct methods were employed, and thé analysis was confined to a body whose
cross section is either a regular polygon or is composed of a basic circle
external to which are superimposed symmetric segments of a logarithmic
spirales In this paper, these arbitrary limitations on the transversal con=-
tour are removed, and the minimum drag problem is investigated with the ine
direct methods of the Calculus of Variations, The following basic hypotheses
are employed: (a) the body is slender in the longitudinal sense; (b) its
longitudinal contour is represented by a power lawy (c) the distribution of
pressure coefficients is Newtonian; and (d) the distribution of skin frice-

tion coefficients versus the abscissa is represented by a power law,
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2, DETERMINATION OF THE DRAG

Coneider two systems of coordinates (Fige, 1): a Carteasian coordinate
system x, ¥, z and a cylindrical coordinate system r, 6, gz, With regard
to the Cartesian coordinate system, the z-axis is identical with the un-
disturbed flow direction, and the xy-plane is perpendicular to the z-axis,
For the cylindrical coordinate system, r is the distance of any point from
the z-axis, and @ measures the angular position of this point with respect
to the zx-plane, Next, denote by Er. Ee, Ez the unit vectors of the cy~
lindrical coordinate system, and observe that the direction of iz is the
same as the undisturbed flow direction. Also, denote by n the unit vector
normal to the infinitesimal element of wetted area dsw' positively oriented
outward, and by t the unit vector which is tangent to dS , and is in the
direction of the local flow after impact, Consequently, the aerodynamic

drag per unit dynamic pressure is given by

D —— - - -
E-ff [-Cpnnuz-tcft'uz]dsw (1)
sw
where

¢ =2(m.a) 2)

is the pressure coefficient associated with Newton's impact law and cf is

the friction coefficient, After it is assumed that the tangent vector is



contained in the plane of the vectors m, Ez and it is observed that

Tod, = |8 x|

(3)
r
dsw =< de dz
b
the aerodynamic drag can be rewritten in the form
anrt
P--[/—"—-[.a(ioi)3+c|ix3|]dedz (W)
q -, z 4 2
0o ' %

where £ is the length of the body. If the geometry of the body is described

by the equation

f(ry 6 2) = 0 (5)

the unit normal vector and the gradient of the function f satisfy the re-

lationship

= vf

(2 g 2

i frur + (fe/r) ug + fzuz

(6)

which implies that
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Consequently, Eqs. (4) and (?) lead to the following relationship between

the aerodynamic drag per unit dynamic pressure and the geometry of the body:

2n r4 28
D r 2z f2 2
2. - c\/ (£./r) de dz (8)
? jc; fo![ ey VT o/ ]

which, because of the slender body approximation (2 z/1’r)2 << 1, reduces to

oo

an 4 21‘3
‘/ 2
s[ f ?r- [- ?-:-(_:—F + Cf fi + (er) ] de dz (9)
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Because of hypotheeis (b), the longitudinal contour of the body is

represented by the power law

-]
£(r, 8, z) =1 - <§) R(8) = 0 (10)

vhere m is an arbitrarily prescribed exponent and R(8) is a function which

deacribes the geometry of the base contour (Fig. 1) Furthermore, because

of hypothesis (d), the distribution of friction coefficients is represented
by (Ref. 2)

f o
Cr = Cf‘(l - ) (z) 1)

where C, 1s the average value of the friction coefficient over the entire

fa
length of the body and o is a constant whose typical values are O for the
idealized model in which the friction coefficient is constant, 1/5 for the
turbulent flow model, and 1/2 for the laminar flow model., In the light of

these hypotheses, the aerodynamic drag per unit dynamic pressure becomes(‘)

T.Yl‘ron Eqe (12), it appears that the exponents defining the longitudinal
contour and the distribution of skin-friction coefficients must satisfy the
inequalities m > 1/2 and o < 1.,

v oy
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D u} R fa \/2 2
- = - ¢  EEES——— R+ﬁ de (12)
q fo Pm-LR+k Bri-@

where the dot sign denotes a derivative with respect to the argument 0,

The associated base area is given by

1 [%2
S =3 R de (13)
0



10

3. FORMUIATION OF THE PROBLEM
Prior to the formulation of the minimum drag problem, it is convenient
to introduce the dimensionless baise radius

/3
R 2(m + 1 - o
V) [ - - cfa]

as well as the drag parameter and the friction parameter

L/3
] n 2m+ 1l -¢
o st o | e

(15)
- (2)1/2 [(Zm -1) (1 -a) cfa]w
f  m \S 2m+ 1 - a)

the second of which is proportional to the ratio of the cubic root of the
average friction coefficient to the average thickness ratio, After the re-
lationships (12) and (13) are rewritten aa(.)

('7'1'1:. subscript i denotes the initial point and the subscript f, the

oann W EAN e AR e e



oy« [ i 2 VI

P
&
16)
)
f
an - f pade
78
and after the end conditions are expressed in the form
o, =0, Ofsaﬂ. = g Q7

the problem of minimizing the drag for a given length and base area is

formulated as follows: "In the class of functions g( 9) which are consistent

with the isoperimetric constraint (16-2) and the end conditions (17), find

that special function such that the integral (16-1) is minimized".

3ele Necessary Conditions
If an undetermined, constant Lagrange multiplier is introduced and

the fundamental function is written as (Ref, 3)

6

» 0 ¢

Floy by M) = — + 2V" ¢ ¥ nf® (18)
o +p



it can L recognized that the previous probleam is equivalent to that of
minimizing the integral

O .
8

subject to the isoperimetric constraint (16-2) and the end conditions (17).

Hence, the Euler-lagrange aquation is given by

E. -E - E = 0 (20)
ae (ab) 3
where
. 4 \3/2
x___20 1- (—,_-—1” ) (2)
ap \/92 . E’z P+ o0

Since the fundamental function is formally independent of the argument @,

this Euler-lagrange equation admits the first integral

F-38=¢C (22)

where ¢ is a constant and where the function & is defined as

.

amy R WS we= e o=
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#py p) = 535 = 20 le- (T'E_!) (23)
p

This first integral must be solved for boundary conditions consistent with
the transversality condition

(r- aﬂ)den’?-dp =0 (24)
Ap 0

which must be satisfied identically for any system of differentials consistent

with the end conditions (17). Therefore, it implies that

£)-6)
LYY Ap T

Incidentally, the solution may or may not involve gngular discontinuities
depending on the wvalues of the average friction coefficient, the base area,
the length, and the exponents defining the longitudinal contour and the dis-
tribution of sgkinefriction coefficients, Should angular discontinuities be
(*)

present, the Erdmann-Weierstrass corner conditions

(.’Tho symbol Al.es) denotes the difference between quantities evaluated
after the corner and before the corner.
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ap Ap

must be satisfied at every corner point. In particular, they imply that
the integration constant C has the same value for every subarc composing
the extremal arc. Finally, the application of the Legendre test indicates
that the following necessary condition must be satisfied everywhere along
the arc minimizing the drag:

2 2 2 2

A°F 2 4 - ]

= .TLm 1+p—%L-1%72 20 (27)
»° (0% + 9°) [ (0° + 0°)

342+ Symmetry and Multiplicity Properties

Inspection of the functions F and ¢ appearing in the first integral
(22) shows that they involve only even powers of p and do not involve the
argument 6 explicitly. This means that, if the function p = p(6) is a par-

ticular solution of the Buler~lagrange equation, then the functions

p=po(=0), p=p(6+ Const) (28)

are also particular solutions. Eq. (28~1) expresses a symmetry property,
since it allows one to obtain from a given extremal shape an infinite number
of equal-drag shapes by drawing t"y mirror image of the original shape with

respect to any arbitrary refer. . direction, Eq. (28-2) expresses a

———
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multiplicity property, since it allows one to obtain from a given extremal
shape an infinite number of equal drag shapes by rotating the original shape
through an arbitrary angle around the z-axis, Furthermore, combined use

of Eqs. (28=1) and (28«2) shows that there exists a class of variational
solutions composed of n identical cycles each of which covera the angular
interval 2rn/n and is symetric with respect to the radial line joining the
origin of the polar coordinate system with the peak point of the cycle.
Since these special golutions are particularly amenable to an analytical
approach, their properties shall be investigated in Section 4, Then, the

more general case is considered in Section 5.
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4, MULTIPLE AND SYWETRIC SOLUTTONS

We shall nov restrict the analysis to the class of bodies composed of
n identical cycles; by hypothesis, each cycle involves a pair of symmetric
segments, and each segment does not involve corners, The total number of
segments is 2n; each covers the angular interval n/n and yields the same
contribution to the drag and the enclosed area, Consequently, the integral

to be extremized and the isoperimetric constraint can be rewritten in the

form
O p6 ,/ 2 2
ZTKD = 2n —_— + 2 Vp +p |48
o p +p
i
(29)
)
4
ZF" -[ 2np2d9
£ Je
vhere
91 = 0 [y ef L d 'T/n (30)

and where the terminal radii are unconstrained, Clearly, the minimum drag

problem consists of minimizing the integral

8¢
1= ] 2nF(p, py \) 40 1)

o

subject to the isoperimetric constraint (29-2) and the end conditions (30)

with the following understanding: the object of the minimization procedure

——
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is to find not only the equation of each segment but also the number of
segments 2n and, hence, the interval of integration A8 = n/n,

Concerning the optimization of the shape of each segment, the Eulere
Lagrange equation (20) is still valid and admits the first integral (22).
This first integral must be solved for boundary conditions comsistent with
the transversality condition (24) which must be satisfied identically for
avery system of differentials consistent with the end conditions (30).

Therefore, it implies that

(2)-(2) - oo
Ap/y p/e

and that

F,=Fp=C (33)

Furthermore, if the first integral (22) is integrated over the interval A6

and Eq, (33) is accounted for, one obtains the expression

0, Y
” 1
f rde-f #8==C= = F, (34)
8 8y

With regard to the optimization of the number of segments, the theorem

of differentiation under the integral sign is applied, that is, the deriva-
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tive of the integral (31) with respect to the parameter n is calculated and
the result is set equal to zero, This operation yields the relationship

8
had
/; Fae - IF, = 0 (35)

which, if combined with Eq. (34), shows that the following integral come

dition must be satisfied by the optimum contour:

Oy
f 340 = 0 (36)
]

g = 8, =0 (3?7)

From the last two equatioms, it appears that some fundamental information
on the nature of the optimum shape can be obtained by investigating the
properties of the function & in the pp-domain (Fig. 2), Clearly, & = O
along the arc composed of the auharc(‘)

p=0 (38)

(‘)Tho Legendre condition (27) shows that Eq. (38) is valid for p < 1 only.

t
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ending at p = 1 and the subarc(')
Woy D) £ 2+ 0% = 0" = 0 (39)

beginning at p = 1, Furthermore, this function is positive to the left
of the line ¢ = O and negative to the right,

Assuning, then, that the initial point and the final point are arbie
trarily located on the line & = O, three classes of bodies must be analyzed
(Fig. 2): (I) bodies with both end points on the line p = 0, (II) bodies
with both end points on the line ¢ = O, and (III1) bodies with the initial
point on the line p = O and the final point on the line 4 = O, Mathemati-

cally speaking, these classes are indicated as follows;

Class 1I: ;= 0, Pp = 0
Class II: =0, ¥,=0 (40)
Cless III: bi =0, +4,=0

For each class, the following subcases need to be examined: (a) the func-
tion & does not change sign along the integration contour; (b) the function
§ does change sign and, therefore, vanishes not only at the end points but
also at some intermediate points; and (c) the function & is zero at every
point between the end points, The following lemmas are of assistance in

finding the solution:

*)tme Legendre condition (27) shows that Eq. (39) is valld for p 21 only.

S e
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Lemma 1, The function & cannot have a constant, positive or negative,
aign along the integration contour, Should & have a constant sign, the

optimum condition (36) would be violated.

Lemma 2, The integration contour may cross the line 4 = O at either

at one point or at infinite points but not at any intermediate number of

points. Should croseings occur, the first integral (22) and Eq. (39)
would be simultaneously valid at all points of interseciion with the impli-

cation that, at these points,

92 = i-—f-g (41)

Now, if the numerator and the denominator of Eq. (41) do not vanish simule
taneously, Eq. (4#1) can be satisfied for only one value of p. On the other
hand, if the numerator and the denominator vanirh simultaneously, Eq. (41)
ie satisfied for any value of p.

Applying the previous lemmas, one can find the extremal solution by
the following exclusion process: for bodies of class I, contour (a) cannot
be extremal because it violates the first lemma; for bodies of class II,
contour (a) cannot be extremal since it violates both lemmas, and contour
(b) cannot be extremal because it violates the second lemma; for bodies of
class III, contour (a) cannot be extremal since it violates the first lemma,
and contour (b) cannot be extremal because it violates the second lemma,

In conclusion, the extremal arc must necessarily be of type (c) and, there-

fore, its most general differential equation is

ol L] ] ] Sn— S —

—

+

[ P



L _— S -

———

¢=0 (42)

The particular differential equations associated with the classes of

bodies identified previously are as follows:
Class I: p=0
Class II: ¥ =0 (43)
Class III: p=0 —~¢=0

Regardless of the particular case, the drag parameter, the friction pa=

rameter, the integration constant, and the Lagrange multiplier satisfy the
relationship

. (b)
LR

which is obtained by combining Eqs. (18), (29), (34), and (36).

h,1, Bodies of Class 1

The contour of these bodies is governed by the differential equation
(43-1) which admits the general integral

ps= Cl (‘*5)

where Cl is a constant, Use of Eqs. (29) supplies the parametric relation-
ships



X, = o(e® +2)
(46)

Lol
]
o+

which, after the parameter p is eliminated, lead to the following minimum

value for the drag parameter (Fig. 3):

14-21(3

Ky = —g— (47)
K,

The associated integration constant and Lagrange multiplier are given by

Ki-l Ki+2
C-T. Xﬂ--—KT- (48)
4 f

From the legendre condition, one can see that Eqs. (45) through (48) are
valid for p <1 only, that is, for l(f > 1. Thus, if one defines 1(f = ] as

the critical value of the friction parameter, the following conclusion is

reached: the extremal arc is a circle for suErcritical values of the

friction parameter,

k.2, Bodies of Class II

The contour of these bodies is governed by the differential equation
(43=2) whose general integral is

s st N DA Wew  an GRS
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1 (49)

where the constant cz, to be evaluated from the initial conditions, is

given by

1
Py * Soa Gy (50)
2
Elimination of the constant from these equations leads to the result
e
p= 3 (51)

which represents the straight-line side of a starlike configuration whose
terminal radii satisfy the relationship

e (52)

pf'cosﬂ-vz-lsin'-'
n Py n

In order to determine the initial radius, the isoperimetric coandition

(29-2) must be combined with the shape equation (49) to yield



n
LJ 40 o )
-' —g—— = tan (2 + C - tan C (53)
Ef o cos(9+ca) <‘ 2 2

This equation, together with Eq. (50), supplies the relationship (Fig. 4)

K 1 n g 2 1/2 (5")
f'-p— ;cot;- pi-l

from which it is clear that, for a given friction parameter, the boundary
value problem does not admit a unique solution but rather an infinite number
of solutions, that is, one initiul radius for each integer value of the
aumber of cycles, The corresponding final radius is presented in Fig. 5
versus the friction parameter for several values of the number of cycles,.
After the initial radius is eliminated from Eqs. (51) and (54), the

geometry of the optimum shape can be rewritten in the functional form
p= o0, xfl n) (55)

which is illustrated in Figs. 6 and 7. In Fig., 6, the friction parameter

is held at the constant value X, = 0,778, and the number of cycles is varied,
In Figo 7, the number of cycles is held at the constant value n = &, and

the friction parameter is varied,

It should be noted that solutions of class II exist if, and only if, the
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relationship (41) is satisfied everywhere, Since this is only possible

for

C-O, A‘-B (56)

use of Eq. (44) yields the following expression for the minimum drag pa-

rameter (Fig. 3):

Ky = é (57)
4

Since this relationship is independent of the number of cycles and the
initial radius, one concludes that all of the extremal solutions corresponde
ing to a given value of the friction parameter have the same drag, Further=
more, because of Eqs. (29~1) and (42-2), each solution is such that the
friction drag is two-thirds of the total drag. Fiaally, from the Legendre
condition, one can see that Eqs. (49) through (57) are valid for p > 1 only,
If this statement is combined with the isoperimetric condition (29-2) and
the mean value theorem is applied, one concludes that starlike solutions
of class II are possible for Kf < 1 only, that is, for subcritical values
of the friction parameter,

Polygonal solutions., The present starlike solutions contain polygonal

solutions as a particular case. For p, = 1, Eq. (51) reduces to

p= ;;-151 (58)
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which is the equation of the side of a regular polygon ciroumscribed om
the circle p = 1, The number of sides (i.e., cycles) of the polygon is
the lowest among all the starlike solutions of class II corresponding to
a given value of the friction parameter and is to be determined from Eq. (54)

which reduces to (Fig. 8)

K = V';' cot ';7 (59)

Clearly, these polygonal solutions are physically realistic only for a dise
crete set of values of the friction parameter, that is, those values for
which n is an integer. Incidentally, the number of sides increases mono~-
tonically with the friction parameter. In particular, for Kf — 1, the
number of sides becomes infinitely large, that is, the extremal solution is
a circle, On the other hand, for Kf - O, the number of sides tends to two,

that is, the extremal solution is a flat plate.

be3, Bodies of Class III

The contour of these bodies is govermed by the differential equations
(43-3) and involves two subarcs: one is circular and the other is a straight
line tangent to the circle, Because of comntinuity considerations, the transie-
tion point from the circle to the straight line is located at p = 1, which
means that, at this point, the two subarcs are tangent to one another,

Analytically, the extremal arc is represented by

e ol R W T AN N e
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(60)

where ¢ is the angular interval corresponding to the circular portion. In
particular, the final radius is given by

Pe = _('—111 \ (61)
cos ; - C)

In order to determine the unknown angle ¢, the isoperimetric condition

(29-2) must be combined with the shape equation (60) to obtain (Fig. 9)

¢ n/n a8
T = ae + —T—-—sc+tan<§-) (62)
:1? 0 ¢ cos (6 - ¢)

f

Elimination of the parameter e¢ from the last two equations yields the re-
lationship

1/2

(63)

which supplies the final radius in terms of the friction parameter and the
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nuaber of cycles (Fig. 5)s For a given friction parameter, the boundary
value problem does not admit a unique solution but rather a finite number
of solutions, The particular solution ¢ = O corresponds to a regular polo=-
gon and, as such, is governed by Eqs. (58) and (59), The remaining solu-
tiones are characterized by a number of cycles less than that of the regular
polygon.

After the parameter ¢ is eliminated from Eqs. (60) and (62), the geometry
of the optimum shape can be rewritten in the functiomal form (55) which is
illustrated in Figs. 10 and 7. In Fig. 10, the friction parameter is held
at the constant value l(f = 0,95, and the number of cycles is varied, In
Fig., 7, the number of cycles is held at the constant value n = 4, and the
friction parameter is varied, Incidentally, the minimum drag parameter is
still represented by Eq. (57) and is plotted in Fig. 3, Since this re=~
lationship is independent of the number of cycles and the final radius, all
of the extremal solutions which correspond to a given value of the friction
parameter have the same drag. Furthermore, each solution is such that the
friction drag is two-thirds of the total drag., Because of the Legendre
condition, these solutions are valid for p > 1 only., If this statement is
combined with the isoperimetric condition (29-2) and the mean value theorem
is applied, one concludes that starlike solutions of class III are possible

for Kf < 1 only, that is, for subcritical values of the friction parameter,

4,4, Discussion of the Results

From the previous analysis, it is evident that the friction parameter

has a considerable influence on the nature of the extremal solution. If

vt
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one defines Kf = 1 as the critical value of the friction parameter, two
distinct behaviors are possible depending on whether the friction parameter
is supercritical (Kf > 1) or subcritical (Kt < 1), If the friction pa=-
rageter is supercritical, the solution is of class I (circular), and the
friction drag contributes more than two-thirds of the total drag. If the
friction parameter is subcritical, the solution is of either class II (star-
like with straighte-line segments) or class III (starlike with circular arcs
p = 1 alternating with straight-line segments tangent to the circular arcs).
The polygonal solutions are a subset of either class II solutioms or

clags III solutions which occur only for discrete values of the friction
parameter,

while the solution is unique in the supercritical case, it is not unique
in the subcritical case, More specifically, for each given value of the
friction parameter, there exists an infinite number of extremal solutions
of class II and class III. However, the solution becomes unique if some
further constraint is imposed on the problem, that is, the initial radius
for bodies of class II and the final radius for bodies of class III,

The solutions of class II as well as those of class III are characterized
by the same value of the minimum drag; furthermore, the frictionm drag is
two-thirds of the total drag. Hence, the drag of these solutions is less
than that of the equivalent body of revolution (subscript R), that is, the
body of revolution having equal length and base area (Fig. 3). Specifically,

the drag ratio is given by

3K°

D {
= (64)
B; l+ 2;3



and is plotted in Fig, (11) versus the friction parameter, Clearly, the
drag reduction associated with the use of starlike cross sections is negli-
gible for values of Kf near unity but may be appreciable for values of Kf

near zero, Its magnitude is 5% for K, = 0.8, 25% for K, = 0.6, and 57% for

Kf = O.“o

.
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5. GENERAL SOLUTIONS

The next step in the analysis is to remove the limitations of the
previous section, that is, to find the extremal arc without the restriction
that the solution be necessarily composed of n identical, symmetric cycles.
Hence, the problem is to find solutions for the first integral (22) sub-
jected to the end conditions (25) and, in the case where discontinuities
occur, to find the corner conditions (26), While a straightforward analyti=-
cal procedure to find the new optimum has not been found, it has been
observed that the differential form (42) of the solution for multiple, sym-
metric bodies is also valid in the most general case. The proof of this
statement lies in the fact that any shape governed by the equation & = O
satisfies (a) the end conditions (25), (b) the cormer conditioms (26), and
(c) the first integral (22) providing the fundamental function satist’ies

the relationghip

F=¢C (65)

everywhere along the extremal arc, It can be verified that each of the
three classes of shapes described by Eqs. (43) is consistent with Eq., (65)
providing the integration constant and the lagrange multiplier be defined
by Eqs. (48) in the supercritical case and by Eqs. (56) in the subcritical
case,

In conclusion, if the friction parameter is supercritical, the extremal

solution is still a circlej; furthermore, the minimum drag parameter obeys

Eqe (47). On the other hand, if the friction parameter is subcritical, any
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combination of circular arcs o = 1 and straight lines tangent t6 the circu-

lar arcs ie an extremal (see Fig. 12 for some typical examples); furthermore,

the minimum drag parameter obeys Eq. (57).

In closing, a word of caution is needed with regard to the assumed dis- .
tribution of pressure coefficients. Since Newton's iaw is an empirical
law which was found to be experimentally valid for convex bodies at moderate
hypersonic Mach numbers, the results of this report. are satisfactory oniy
fhr.the circular solutions, the polygonal solutions, and the starlike so=-
lutions of class IiI. For the starlike solutions of cl;ss iI, the ac-
ceptability of the results decreases as the concavity of the extremal ine
creasés. Therefore, these golutions are indicative of trends only; in par=-
ticular, the associated aerodynamic drag should be regalculatgd with more

sophisticated fluid mechanice techniques than-thb;e employed here,
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